Down's syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse
نویسندگان
چکیده
AIMS Cardiac malformations are prevalent in trisomies of human chromosome 21 [Down's syndrome (DS)], affecting normal chamber separation in the developing heart. Efforts to understand the aetiology of these defects have been severely hampered by the absence of an accurate mouse model. Such models have proved challenging to establish because synteny with human chromosome Hsa21 is distributed across three mouse chromosomes. None of those engineered so far accurately models the full range of DS cardiac phenotypes, in particular the profound disruptions resulting from atrioventricular septal defects (AVSDs). Here, we present analysis of the cardiac malformations exhibited by embryos of the transchromosomic mouse line Tc(Hsa21)1TybEmcf (Tc1) which contains more than 90% of chromosome Hsa21 in addition to the normal diploid mouse genome. METHODS AND RESULTS Using high-resolution episcopic microscopy and three-dimensional (3D) modelling, we show that Tc1 embryos exhibit many of the cardiac defects found in DS, including balanced AVSD with single and separate valvar orifices, membranous and muscular ventricular septal defects along with outflow tract and valve leaflet abnormalities. Frequencies of cardiac malformations (ranging from 38 to 55%) are dependent on strain background. In contrast, no comparable cardiac defects were detected in embryos of the more limited mouse trisomy model, Dp(16Cbr1-ORF9)1Rhr (Ts1Rhr), indicating that trisomy of the region syntenic to the Down's syndrome critical region, including the candidate genes DSCAM and DYRK1A, is insufficient to yield DS cardiac abnormalities. CONCLUSION The Tc1 mouse line provides a suitable model for studying the underlying genetic causes of the DS AVSD cardiac phenotype.
منابع مشابه
Dosage of the Abcg1-U2af1 Region Modifies Locomotor and Cognitive Deficits Observed in the Tc1 Mouse Model of Down Syndrome
Down syndrome (DS) results from one extra copy of human chromosome 21 and leads to several alterations including intellectual disabilities and locomotor defects. The transchromosomic Tc1 mouse model carrying an extra freely-segregating copy of human chromosome 21 was developed to better characterize the relation between genotype and phenotype in DS. The Tc1 mouse exhibits several locomotor and ...
متن کاملThe telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome
Trisomy 21 or Down syndrome (DS) is the most common form of human aneuploid disorder. Increase in the copy number of human chromosome 21 genes leads to several alterations including mental retardation, heart and skeletal dysmorphologies with additional physiological defects. To better understand the genotype and phenotype relationships, several mouse models have been developed, including the tr...
متن کاملSleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal compl...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملP-102: The Effect of Strontium on Growth and Development of Two-Cell Arrested NMRI Mouse Embryos
Background: Decreasing the growth and developmental rate of embryo and arresting in certain step of development like two cell block could be the reason of infertility in some couples referring to fertility and infertility center. The aim of this study is the effect of strontium on growth and development of two-cell arrested NMRI mouse embryo. Materials and Methods: The female mice were coupled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 88 شماره
صفحات -
تاریخ انتشار 2010